Received 22 July 2002

Accepted 12 August 2002

Online 16 August 2002

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mao-Lin Hu,^a Ming-De Ye,^a Sharifuddin M. Zain^b and Seik Weng Ng^b*

^aDepartment of Chemistry and Material Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.008 Å R factor = 0.058 wR factor = 0.181 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The 2-aminopyrimidin-1-ium trichloroacetate ion-pairs in the title compound, $C_4H_6N_3^+ \cdot C_2Cl_3O_2^-$, are held together by two N-H···O hydrogen bonds [N_{amino}···O = 2.733 (5);

 $N_{pyrimidinium} \cdots O = 2.783$ (6) Å], and adjacent ion-pairs are

linked into a linear helical chain by a third and substantially

2-Aminopyrimidin-1-ium trichloroacetate

weaker $N - H \cdots O$ hydrogen bond $[N \cdots O = 3.026 (3) Å]$. The calculated structure of the ion-pair geometry, optimized at the *PM3* level, shows good agreement with the experimental results.

A number of carboxylic acids have been crystallographically documented as secondary-ammonium carboxylates; these compounds generally adopt dimeric hydrogen-bonded motifs (Ng *et al.*, 2001). In the title 2-aminopyrimidin-1-ium carboxylate, the amino group forms a hydrogen bond with an O atom of the carboxylate group, whose second O atom is involved in hydrogen bonding with the protonated N atom of the aromatic cation (Fig. 1). The ion-pairs are linked by a third, substantially weaker, hydrogen bond to furnish a helical chain that runs parallel to the *b* axis of the monoclinic cell (Fig. 2).

The calculated structure of the ion-pair that has been optimized at the *PM3* level (Table 1) shows good agreement with the solid-state structure in the hydrogen-bonding interaction. However, the calculated structure has a delocalized carboxylate $-COO^{-}$ group, whereas the geometry of this group in the experimental structure is indicative of at least partial localization of single and double carbon–oxygen bonds.

Experimental

The organic salt was the crystalline compound that resulted from the reaction of europium perchlorate (0.45 g, 1 mmol), 2-aminopyrimidine (0.20 g, 2 mmol) and trichloroacetic acid (0.33 g, 2 mmol). 2-Aminopyrimidine dissolved in a small volume of ethanol was added to europium perchlorate dissolved in water to afford a precipitate. Trichloroacetic acid, dissolved in water, was then added to dissolve the precipitate; the clear solution was filtered and then set aside. Colorless crystals of the title compound separated from the solution after several days.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEPII (Johnson, 1976) plot of the hydrogen-bonded ion-pair. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

Figure 2

*ORTEP*II (Johnson, 1976) plot, showing the ion-pairs linked by a weak N···O hydrogen bond $[N3 \cdot \cdot O1^i = 3.026 \ (6) \ \text{Å}; N3 - H \cdot \cdot O^i = 137 \ (5)^\circ;$ symmetry code (i): $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$] into a helical chain along the *b* axis.

Crystal data

 $C_4H_6N_3^+ \cdot C_2Cl_3O_2^ D_x = 1.677 \text{ Mg m}^{-3}$ $M_r = 258.49$ Mo $K\alpha$ radiation Cell parameters from 1504 Monoclinic, $P2_1/c$ a = 8.468 (2) Åreflections b = 11.297 (2) Å $\theta = 2.5 - 24.8^{\circ}$ c = 10.957 (2) Å $\mu = 0.87 \text{ mm}^{-1}$ $\beta = 102.314(3)^{\circ}$ T = 298 (2) KV = 1024.1 (3) Å³ Block, colorless $0.40 \times 0.30 \times 0.10 \mbox{ mm}$ Z = 4

Data collection

Siemens CCD area-detector diffractometer ω scans Absorption correction: none 5155 measured reflections 1748 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.181$ S = 1.041748 reflections 139 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Comparison of experimental and geometry-optimized bond dimensions $(\mathring{A},{}^{\circ}).$

1081 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0924P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

 $R_{\rm int} = 0.041$

 $\theta_{\rm max} = 24.8^{\circ}$

 $h = -9 \rightarrow 9$

 $\begin{array}{l} k=-13\rightarrow 12\\ l=-10\rightarrow 12 \end{array}$

+ 0.867P]

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 1.04 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

	X-ray structure	Geometry-optimized structure
Cl1-C2	1.772 (5)	1.757
Cl2-C2	1.753 (5)	1.754
Cl3-C2	1.760 (5)	1.760
O1-C1	1.250 (6)	1.263
O2-C1	1.227 (6)	1.253
N1-C3	1.362 (6)	1.404
N1-C4	1.344 (6)	1.382
N2-C3	1.338 (6)	1.402
N2-C6	1.321 (7)	1.328
N3-C3	1.315 (7)	1.351
C1-C2	1.563 (7)	1.531
C4-C5	1.360 (7)	1.374
C5-C6	1.387 (8)	1.418
N1···O1	2.733 (5)	2.704
N3···O2	2.783 (6)	2.721
C4-N1-C3	120.9 (4)	118.5
C6-N2-C3	116.7 (4)	119.0
O1-C1-O2	128.8 (5)	121.1
O1-C1-C2	114.7 (4)	118.6
O2-C1-C2	116.4 (5)	120.3
C1-C2-Cl1	111.1 (3)	111.0
C1-C2-Cl2	112.8 (3)	113.5
C1-C2-Cl3	108.2 (3)	109.4
Cl1-C2-Cl2	106.6 (3)	107.8
Cl1-C2-Cl3	108.0 (3)	108.1
Cl2-C2-Cl3	110.1 (3)	107.9
N1-C3-N2	121.5 (5)	121.1
N1-C3-N3	118.5 (5)	120.2
N2-C3-N3	119.9 (5)	118.8
N1-C4-C5	119.3 (5)	120.7
C4-C5-C6	116.8 (5)	119.1
N2-C6-C5	124.6 (5)	121.7
$N1 - H \cdot \cdot \cdot O1$	177 (5)	180
$N2-H\cdots O2$	166 (5)	168

The nitrogen-bound H-atoms were located and refined, subject to $N-H = 0.85\pm0.01$ Å; the aromatic H atoms were positioned geometrically and were allowed to ride on their parent C-atoms, with $U(H) = 1.2U_{eq}(C)$. A residual peak of 1 e Å⁻³ was found at 1.1 Å from the Cl3 atom.

For the geometry-optimization calculations, the initial structure was taken from the X-ray results. It was optimized in its lowest energy state (singlet spin state), using the semi-empirical quantum chemical *PM3* Hamiltonian in *HYPERCHEM* (Hypercube, Inc., 2001). The unrestricted Hartree–Fock method was employed in the optimization.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97 (Sheldrick, 1997).

The authors thank Nanjing University for the diffraction measurements, and the Education Commission of Zhejiang Province (grant No. 20010129), Wenzhou Normal College, and the University of Malaya (F0717/2002A) for supporting this work.

References

- Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hypercube Inc. (2001). *HYPERCHEM*. Release 6.01 for Windows. Hypercube Inc., Waterloo, Ontario, Canada.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- Ng, S. W., Chantrapromma, S., Razak, I. A. & Fun, H.-K. (2001). Acta Cryst. C57, 291–292.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.